3 research outputs found

    Numerical modeling of virus transport through unsaturated porous media

    Get PDF
    This paper describes the movement of virus in one-dimensional unsaturated porous media. The governing virus transport equations consider the inactivation in liquid phase, liquid–solid interface, air–liquid interface, and sorption in both liquid–solid and air–liquid interfaces. Finite-volume method has been used for solving the advection and dispersion processes of the virus transport equation. The effects of transport parameters on virus concentration profiles have been investigated for virus present in liquid phase, adsorbed liquid–solid and liquid–air phases. The results show that the movement of viruses in three phases is affected by soil moisture, inactivation rate, pore velocity, and mass transfer coefficients. It is found that the magnitude of virus sorption is higher at the air–liquid interface as compared to the liquid–solid interface. A higher value of mass transfer coefficient leads to an increase in the virus concentration in both liquid–solid and air–liquid interfaces

    The value of soil temperature data versus soil moisture data for state, parameter, and flux estimation in unsaturated flow model

    No full text
    Abstract This synthetic study explores the value of near‐surface soil moisture and soil temperature measurements for the estimation of soil moisture and soil temperature profiles, soil hydraulic and thermal parameters, and latent heat and sensible heat fluxes using data assimilation (ensemble Kalman filter) in combination with unsaturated zone flow modeling (HYDRUS‐1D), for 12 United States Department of Agriculture soil textures in a homogeneous and bare soil scenario. The soil moisture profile is estimated with a root mean square error (RMSE) of 0.04 cm3/cm3 for univariate soil temperature assimilation and 0.01 cm3/cm3 for univariate soil moisture assimilation. Soil temperature assimilation performs better for soils with higher clay content compared to soils with higher sand content. The latent and sensible heat fluxes are estimated with smaller RMSE for univariate soil temperature assimilation compared to univariate soil moisture assimilation for 8 out of 12 soil types. As the climate condition changes from hot semi‐arid to sub‐humid climate, the soil moisture assimilation performs better for high permeable soil but worse for low permeable soil. In summary, the findings suggest that for most soil texture classes, assimilating soil temperature in vadose zone models is skillful to improve latent heat flux, soil moisture profile, and soil hydraulic parameters. Joint assimilation with soil moisture can further enhance the accuracy of the model outputs for all range of soil texture and climate conditions
    corecore